其乐融融的IT技术小站

深入理解MySQL中的Join算法

在数据库处理中,Join操作是最基本且最重要的操作之一,它能将不同的表连接起来,实现对数据集的更深层次分析。

MySQL作为一款流行的关系型数据库管理系统,其在执行Join操作时使用了多种高效的算法,包括Index Nested-Loop Join(NLJ)和Block Nested-Loop Join(BNL)。这些算法各有优缺点,本文将探讨这两种算法的工作原理,以及如何在MySQL中使用它们。

什么是Join

在MySQL中,Join是一种用于组合两个或多个表中数据的查询操作。Join操作通常基于两个表中的某些共同的列进行,这些列在两个表中都存在。MySQL支持多种类型的Join操作,如Inner Join、Left Join、Right Join等。

Inner Join是最常见的Join类型之一。在Inner Join操作中,只有在两个表中都存在的行才会被返回。

例如,如果我们有一个“customers”表和一个“orders”表,我们可以通过在这两个表中共享“customer_id”列来组合它们的数据。


SELECT *
FROM customers
INNER JOIN orders
ON customers.customer_id = orders.customer_id;

上面的查询将返回所有存在于“customers”和“orders”表中的“customer_id”列相同的行。

Index Nested-Loop Join

Index Nested-Loop Join(NLJ)算法是Join算法中最基本的算法之一。

在NLJ算法中,MySQL首先会选择一个表(通常是小型表)作为驱动表,并迭代该表中的每一行。然后,MySQL在第二个表中搜索匹配条件的行,这个搜索过程通常使用索引来完成。一旦找到匹配的行,MySQL将这些行组合在一起,并将它们作为结果集返回。

工作流程如图:

例如,执行下面这个语句:

select * from t1 straight_join t2 on (t1.a=t2.a);

注:当使用 straight_join 时,MySQL会强制按照在查询中指定的从左到右的顺序执行连接。

在这个语句里,假设 t1 是驱动表,t2 是被驱动表。我们来看一下这条语句的explain结果。

可以看到,在这条语句里,被驱动表t2的字段a上有索引,join过程用上了这个索引,因此这个语句的执行流程是这样的:

  • 从表t1中读入一行数据 R;
  • 从数据行R中,取出a字段到表t2里去查找;
  • 取出表t2中满足条件的行,跟R组成一行,作为结果集的一部分;
  • 重复执行步骤1到3,直到表t1的末尾循环结束。

这个过程就跟我们写程序时的嵌套查询类似,并且可以用上被驱动表的索引,所以我们称之为「Index Nested-Loop Join」,简称NLJ。

NLJ是使用上了索引的情况,那如果查询条件没有使用到索引呢?

MySQL会选择使用另一个叫作「Block Nested-Loop Join」的算法,简称BNL。

Block Nested-Loop Join

Block Nested Loop Join(BNL)算法与NLJ算法不同的是,BNL算法使用一个类似于缓存的机制,将表数据分成多个块,然后逐个处理这些块,以减少内存和CPU的消耗。

例如,执行下面这个语句:

select * from t1 straight_join t2 on (t1.a=t2.b);

如果 t2 表的字段b上是没有建立索引的。这时候,被驱动表上没有可用的索引,算法的流程是这样的:

  • 把表t1的数据读入线程内存join_buffer中,由于我们这个语句中写的是select *,因此是把整个表t1放入了内存;
  • 扫描表t2,把表t2中的每一行取出来,跟join_buffer中的数据做对比,满足join条件的,作为结果集的一部分返回。

这条SQL语句的explain结果如下所示:

可以看到,在这个过程中,MySQL对表 t1 和 t2 都做了一次全表扫描,因此总的扫描行数是1100。

由于join_buffer是以无序数组的方式组织的,因此对表t2中的每一行,都要做100次判断,总共需要在内存中做的判断次数是:100*1000=10万次。

虽然Block Nested-Loop Join算法是全表扫描。但是是在内存中进行的判断操作,速度上会快很多。但是性能仍然不如NLJ。

join_buffer的大小是由参数join_buffer_size设定的,默认值是256k。

那如果join_buffer_size的大小不足以放下表t1的所有数据呢?

办法很简单,就是分段放,执行流程如下:

  • 顺序读取数据行放入join_buffer中,直到join_buffer满了。
  • 扫描被驱动表跟join_buffer中的数据做对比,满足join条件的,作为结果集的一部分返回。
  • 清空join_buffer,重复上述步骤。

虽然分成多次放入join_buffer,但是判断等值条件的次数还是不变的,依然是10万次。

MRR & BKA

上篇文章里我们有提到MRR(Multi-Range Read)。MySQL在5.6版本后引入了**Batched Key Acess(BKA)**算法,这个BKA算法,其实就是对NLJ算法的优化,而BKA算法正是基于MRR。

NLJ算法执行的逻辑是:从驱动表t1,一行行地取出a的值,再到被驱动表t2去做join。也就是说,对于表t2来说,每次都是匹配一个值。这时,MRR的优势就用不上了。

其实我们可以从表t1里一次性地多拿些行出来,先放到一个临时内存,一起传给表t2。这个临时内存不是别人,就是join_buffer。

通过上一篇文章,我们知道join_buffer 在BNL算法里的作用,是暂存驱动表的数据。但是在NLJ算法里并没有用。那么,我们刚好就可以复用join_buffer到BKA算法中。

NLJ算法优化后的BKA算法的流程,如图所示:

图中,在join_buffer中放入的数据是R1~R100,表示的是只会取查询需要的字段。当然,如果join buffer放不下R1~R100的所有数据,就会把这100行数据分成多段执行上图的流程。

如果要使用BKA优化算法的话,你需要在执行SQL语句之前,先设置:

set optimizer_switch='mrr=on,mrr_cost_based=off,batched_key_access=on';

其中,前两个参数的作用是要启用MRR。这么做的原因是,BKA算法的优化要依赖于MRR。

对于BNL,我们可以通过建立索引转为BKA。但是,有时候你确实会碰到一些不适合在被驱动表上建索引的情况。比如下面这个语句:

select * from t1 join t2 on (t1.b=t2.b) where t2.b>=1 and t2.b<=2000;

假设t1表1000行,t2表100万行,t2.b<=2000过滤后,t2表需要参与join的只有2000行数据。

如果这条语句是一个低频的SQL语句,那么在表t2的字段b上创建索引就很浪费了。

这时候,我们可以考虑使用临时表。使用临时表的大致思路是:

  • 把表t2中满足条件的数据放在临时表tmp_t中;
  • 为了让join使用BKA算法,给临时表tmp_t的字段b加上索引;
  • 让表t1和tmp_t做join操作。

此时,对应的SQL语句的写法如下:

create temporary table temp_t(id int primary key, a int, b int, index(b))engine=innodb;
insert into temp_t select * from t2 where b>=1 and b<=2000;
select * from t1 join temp_t on (t1.b=temp_t.b);

总体来看,不论是在原表上加索引,还是用有索引的临时表,我们的思路都是让join语句能够用上被驱动表上的索引,来触发BKA算法,提升查询性能。

总结

在MySQL中,不管Join使用的是NLJ还是BNL总是应该使用小表做驱动表。更准确地说,在决定哪个表做驱动表的时候,应该是两个表按照各自的条件过滤,过滤完成之后,计算参与join的各个字段的总数据量,数据量小的那个表,就是“小表”,应该作为驱动表。

另外应当尽量避免使用BNL算法,如果确认优化器会使用BNL算法,就需要做优化。优化的常见做法是,给被驱动表的join字段加上索引,把BNL算法转成BKA算法。对于不好在索引的情况,可以基于临时表的改进方案,提前过滤出小数据添加索引。

赞 ()
分享到:更多 ()

相关推荐

内容页底部广告位3
留言与评论(共有 0 条评论)
   
验证码: